Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Poult Sci ; 102(11): 103051, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37774520

RESUMEN

Global warming and climate changes have a detrimental impact on poultry production, causing substantial economic losses. This study investigated the effects of incorporating dietary betaine (BT) and organic minerals (OMs) on broilers' performance as well as their potential to mitigate the negative impacts of heat stress (HS). Six hundred 1-day-old Ross 308 chicks were randomly allocated to 12 experimental treatments with 5 replicates of 10 birds each (5 male + 5 female). The birds were provided with diets containing BT (0 and 2,000 ppm) and OMs (0, 250, and 500 ppm), either individually or in combination, under both thermoneutral and HS-inducing temperatures. The HS conditions involved exposing the birds to cyclic periods of elevated temperature (35°C ± 2°C) for 6 h daily, from 10:00 am to 4:00 pm, starting from d 10 and continuing until d 35. The exposure to HS deteriorated birds' growth performance; however, dietary BT and OMs inclusion improved the growth performance parameters bringing them close to normal levels. Carcass traits were not affected by dietary supplementation of BT, OMs, HS, or their interaction. Interestingly, while HS led to increased (P < 0.05) levels of total cholesterol, LDL-cholesterol, and hepatic malondialdehyde (MDA), these adverse effects were mitigated (P < 0.05) by the addition of BT and OMs. Moreover, dietary BT supplementation led to elevated serum total protein and globulin concentrations. Cyclic HS did not alter Mn, Zn, and Cu contents in the pectoral muscle. However, the incorporation of OMs at both levels increased concentrations of these minerals. Notably, the combination of 500 ppm OMs and 2,000 ppm BT improved Mn, Zn, Cu, and Fe digestibility, which has been compromised under HS conditions. Cyclic HS upregulated gene expression of interleukin-1ß, heat shock protein 70, and Toll-like receptor-4 while downregulated the expression of claudin-1, uncoupling protein, growth hormone receptor, superoxide dismutase 1, glutathione peroxidase 1 and insulin-like growth factor 1. The aforementioned gene expressions were reversed by the combination of higher dietary levels of BT and OMs. In conclusion, the dietary supplementation of 500 ppm OMs along with 2,000 ppm BT yielded significant improvements in growth performance and mineral digestibility among broiler chickens, regardless of thermal conditions. Moreover, this combination effectively restored the expression of growth-related genes even under heat-stress conditions.


Asunto(s)
Betaína , Suplementos Dietéticos , Animales , Masculino , Femenino , Pollos/fisiología , Minerales/metabolismo , Dieta/veterinaria , Respuesta al Choque Térmico , Alimentación Animal/análisis , Calor
2.
Poult Sci ; 99(6): 3070-3078, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32475443

RESUMEN

The effects of different rearing systems (RS) including cage rearing systems (CRS), litter rearing systems (LRS), and perforated plastic slate rearing systems (PSRS) on the productive performance, carcass traits, blood hematological and biochemical parameters, and humoral immunity in broiler chickens exposed to heat stress were investigated. A total of 270 1-day-old Avian 48 chicks were randomly assigned to 3 groups equally, each was divided into 9 replicates (each of 10 birds) housed in studied RS. Results revealed that CRS had higher (P < 0.001) body weight and weight gain at all experimental periods (except in the sixth wk for weight gain) followed by LRS. Birds housed in PSRS consumed lower (P < 0.001) feed than those in CRS (during the fourth to sixth and overall periods) and LRS (during all experimental periods except the second one). Best values of feed conversion ratio and European broiler index were shown in CR birds. All carcass traits were not altered by different RS except the percentages of dressing, liver, breast, and left filet, which were elevated (P < 0.05) in caged birds. Eosinophil, lymphocyte, basophil, and monocyte counts and phagocytic index and activity were reduced (P < 0.05 or P < 0.01) in LRS. Humoral immune response against the Newcastle disease virus and avian influenza were not differed. Birds in LRS showed higher (P < 0.05) serum cholesterol, uric acid, and lactate dehydrogenase as well as liver and muscle cholesterol contents. Lipid peroxidation was reduced (P < 0.05) in the LRS and PSRS groups, whereas superoxide dismutase was elevated (P < 0.05) in CRS and LRS. Thus, CRS and LRS were preferred for better growth performance and carcass traits of heat-stressed broilers, whereas CRS and PSRS were better in reducing tissue cholesterol under the conditions of our study.


Asunto(s)
Crianza de Animales Domésticos/métodos , Pollos/fisiología , Respuesta al Choque Térmico , Inmunidad Humoral , Carne/análisis , Estrés Oxidativo/fisiología , Animales , Biomarcadores , Análisis Químico de la Sangre/veterinaria , Pollos/sangre , Pollos/crecimiento & desarrollo , Pollos/inmunología , Egipto , Pruebas Hematológicas/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...